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Abstract 
Background: Andrographolide (Andro) is a diterpenoid component of 
the plant Andrographis paniculata that is known for its anti-tumor 
activity against a variety of cancer cells.   
Methods: We studied the effects of Andro on the viability of the 
human leukemia monocytic cell line THP-1 and the human multiple 
myeloma cell line H929. Andro was compared with cytosine 
arabinoside (Ara-C) and vincristine (VCR), which are well-established 
therapeutics against hematopoietic tumors. The importance of 
reactive oxygen species (ROS) production for the toxicity of each agent 
was investigated by using an inhibitor of ROS production, N-acetyl-L-
cysteine (NAC).    
Results:  Andro reduced the viability of THP-1 and H929 in a 
concentration-dependent manner. H929 viability was highly 
susceptible to Andro, although only slightly susceptible to Ara-C. The 
agents Andro, Ara-C, and VCR each induced apoptosis, as shown by 
cellular shrinkage, DNA fragmentation, and increases in annexin V-
binding, caspase-3/7 activity, ROS production, and mitochondrial 
membrane depolarization. Whereas Ara-C and VCR increased the 
percentages of cells in the G0/G1 and G2/M phases, respectively, 
Andro showed little or no detectable effect on cell cycle progression. 
The apoptotic activities of Andro were largely suppressed by NAC, an 
inhibitor of ROS production, whereas NAC hardly affected the 
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apoptotic activities of Ara-C and VCR.  
Conclusions: Andro induces ROS-dependent apoptosis in monocytic 
leukemia THP-1 and multiple myeloma H929 cells, underlining its 
potential as a therapeutic agent for treating hematopoietic 
tumors. The high toxicity for H929 cells, by a mechanism that is 
different from that of Ara-C and VCR, is encouraging for further 
studies on the use of Andro against multiple myeloma.

Keywords 
Andrographis paniculata, andrographolide, apoptosis, reactive oxygen 
species, monocytic leukemia cells, multiple myeloma cells
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Introduction
Many plant-derived products possess a potential for use in chemotherapy. For example, vincristine (VCR) and
vinblastine—two natural alkaloids isolated from Vinca rosea—inhibit cell division and are commonly used in anticancer
medicine (Varma et al., 2011). Another example is andrographolide (Andro), a diterpenoid lactone isolated from the
Asian herbal plant Andrographis paniculata, which has a variety of pharmacological effects including anti-tumor, anti-
inflammatory, anti-viral, and anti-malarial activities (Hao et al., 2020; Islam et al., 2018; Kishore et al., 2017; Kumar
et al., 2020; Sareer et al., 2014).

Andro has been shown to have anti-tumor activities against solid and hematopoietic tumor cell lines, established from
colon-, gastric-, liver-, breast-, and prostatic cancers, leukemia, and lymphoma (Banerjee et al., 2016; Chen et al., 2012;
Cheung et al., 2005; Dai et al., 2017; Khan et al., 2018; Kim et al., 2005; Yang et al., 2010). Common observations in
these studies were that Andro reduced the cell viability/proliferation, although the mechanisms were found to differ per
cell type. Inmost cases, the reduced viability of the tumor cell lines could at least partially be explained by the induction of
apoptosis (Banerjee et al., 2016; Cheung et al., 2005; Dai et al., 2017; Khan et al., 2018; Kim et al., 2005; Yang et al.,
2010), but in several liver cancer cell lines the cell death caused by Andro was distinct from apoptosis (Chen et al., 2012).
Moreover, among different tumor cell lines, Andro treatment showed a variable effect on the cell distribution among cell
cycle phases (Banerjee et al., 2016; Cheung et al., 2005; Dai et al., 2017; Khan et al., 2018). From the perspective of its
potential usage as an anti-cancer drug, the most important observations were that at concentrations at which Andro
significantly reduced the viability of tumor cells, normal epithelial cells and lymphocytes were not noticeably affected
(Banerjee et al., 2016; Khan et al., 2018; Yang et al., 2010). Equally important from a therapy point of view was that, at
least in vitro, primary lymphoma cells were even more sensitive to Andro than lymphoma cell lines (Yang et al., 2010).

THP-1 (RRID:CVCL_0006) is a permanent human monocytic cell line derived from an acute monocytic leukemia
patient (Abrink et al., 1994; Tsuchiya et al., 1980). Previously, preparations or modifications of Andro were found to be
toxic for THP-1 cells (Doi et al., 2018; Habtemariam, 2003; Lee et al., 2012), to enhance the cells’ expressions of
cytokine IFNγ and of stress-protein GRP-78 (Gupta et al., 2020), and to interfere with their functional properties such as
the (immune-induced) activation and/or production of transcription factor NF-κB, matrix metalloproteinase-9, and
various cytokines (Doi et al., 2018; Gupta et al., 2020; Lee et al., 2012; Low et al., 2015; Nie et al., 2017), and their
migration in a chemotaxis assay (Zhang et al., 2019). An analogue of Andro,14-Deoxy-11,12-didehydroandrographolide
(AND2), induced apoptosis in THP-1 cells (Raghavan et al., 2014), and we reported that also Andro itself induces
apoptosis in these cells (Doi et al., 2018).

H929 (aka “NCI-H929”) (RRID:CVCL_1600) is a permanent human IgA-kappa-producing multiple myeloma cell line
(Gazdar et al., 1986). Andro was found to have inhibitory/cytotoxic/apoptotic effects on other multiple myeloma cell
lines, even at low concentrations (Gao andWang, 2016; Gunn et al., 2011). These high sensitivities led us to be interested
in the effects of Andro treatment on H929 cells, and earlier we reported that Andro was apoptotic and toxic for H929 cells
(Doi et al., 2017).

The differences between the previous research and objectives of the current research, and the additional value that this
new research brings, is that now we directly compared the viability-reducing effects and their mechanisms of Andro
on both THP-1 and H929 cells, and for the first time investigated the involvements of reactive oxygen species (ROS)
production. The effects of Andro were compared with those of the common anti-cancer drugs VCR and Ara-C (aka
cytarabine). VCR and Ara-C are widely used as chemotherapeutic agents against soft tissue tumors and hematopoietic
tumors including acute leukemia, lymphoma, and multiple myeloma (Koharazawa et al., 2008; Lu et al., 2003; Short and
Ravandi, 2016; Tsimberidou et al., 2014). Andro showed an excellent viability-reducing activity against both THP-1 and
H929 cells, and in the case of H929 cells this effect was markedly superior to that of VCR or Ara-C. Unlike with Ara-C
and VCR, the viability-reducing effect of Andro was found to be dependent on enhanced ROS production.

REVISED Amendments from Version 2

Following the recommendations by Reviewer 2, who approved the study but recommended minor
changes, we have now: (i) Changed some wording in the abstract, (ii) added some information to the
materials and methods section, (iii) included more representative original data in Figures 3 and 4,
(iv) in the Discussion section provided more detailed information on Andro concentrations used in
studies by others, and (v) provided anew Figure 9 to show the structure of Andro as not all readerswill be
familiar with it.

Any further responses from the reviewers can be found at the end of the article

Page 3 of 21

F1000Research 2022, 10:542 Last updated: 28 OCT 2022



Methods
Materials
Andro was purchased from Tokyo Chemical Industry (Tokyo, Japan), dissolved in ethanol at 10 mM, and used
at 10-50 μM. The IUPAC name of Andro, computed by Lexichem TK 2.7.0 (PubChem release 2021.05.07;
https://pubchem.ncbi.nlm.nih.gov/compound/5318517), is (3E,4S)-3-[2-[(1R,4aS,5R,6R,8aS)-6-hydroxy-5-(hydroxy-
methyl)-5,8a-dimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]ethylidene]-4-hydroxyoxolan-2-one.
Cytosine arabinoside (Ara-C) and vincristine (VCR) were purchased from SIGMA-ALDRICH (Missouri, USA),
dissolved in phosphate-buffered saline (PBS; 150 mM NaCl, 10 mM phosphate-buffer, pH 7.2), and used at 40 μM
and 0.1 μM, respectively. Carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK), a pan-
caspase inhibitor was purchased from Promega (Tokyo, Japan) and used at 20 μM. As an antioxidant, N-acetyl-L-
cysteine (NAC) was purchased from Funakoshi (Tokyo, Japan), dissolved in ultra-pure water at 1 M and used at 3 mM.

Cell culture
THP-1 cells (humanmonocytic leukemia cell line; EC88081201; RRID:CVCL_0006) and NCI-H929 cells (human IgA-
kappa-producing multiple myeloma cell line; EC95050415; RRID:CVCL_1600) were obtained from DS PHARMA
BIOMEDICAL (Osaka, Japan). They were grown in RPMI 1640 medium (Sigma-Aldrich) supplemented with 10%
fetal bovine serum (FBS; Equitech-Bio Inc, Kerrville, USA), 100 U/mL of penicillin, and 100 μg/mL of streptomycin
(GIBCO, Carlsbad, USA) at 37 °C with 5%CO2. For experiments, Andro, Ara-C, or VCRwere added to the cell cultures
at the appropriate concentrations. NAC was added to the cell culture one hour before the addition of Andro, Ara-C, or
VCR. Control (untreated) cells were harvested at 24 h.

Morphological observation
Cells were deposited on glass slides by the cytospin method at 40�g for 5 min (Cyto-Tek 2500 Cytocentrifuge, Sakura,
Tokyo, Japan) (Tokunaga et al., 2017). The glass slides were fixed withWright’s solution (Muto Pure Chemicals, Tokyo,
Japan) and stained with Giemsa’s solution (Muto Pure Chemicals) to observe the morphological changes of the cells.

DNA fragmentation analysis
Cells were centrifuged at 300�g for 5 min and washed once with PBS. The cell pellet was suspended in 100 μL of
cell lysis buffer (10 mM Tris–HCl buffer, pH 7.4 containing 10 mM EDTA and 0.5% Triton X-100), and kept at 4°C for
10 min. Cell lysate was centrifuged at 16,000�g for 20 min. The supernatants (100 μL) were incubated with 2 μL of
RNase A (20 mg/mL; MACHEREY-NAGEL, USA) at 37°C for 60 min, and then with 2 μL of proteinase K solution
(20 mg/mL; Wako, Japan) at 37°C for 60 min. After adding 20 μL of 5 M NaCl and 120 μL of isopropyl alcohol, these
mixtures were kept at�30°C overnight. The precipitate was then collected by centrifugation at 16,000�g for 15 min and
washed twice with 70% ethanol. After removal of ethanol, samples were allowed to stand for 5 min on a clean bench to
volatilize the remaining ethanol. DNA samples were then dissolved in TE buffer (10 mM Tris–HCl, pH 7.4 and 1 mM
EDTA), and subjected to 2% agarose gel electrophoresis at 100 V for 45 min. DNAwas stained with 0.5 μg/mL ethidium
bromide solution (Genesee Scientific, San Diego, USA).

MTT assay
The inhibition of cell proliferation wasmeasured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay kit (Cayman Chemical Company, Ann Arbor, USA). The principle of this method relies on the production
of purple pigments by living cells upon cleavage of tetrazolium salt to formazan by their intracellular NAD(P)H-
oxidoreductase, whereas such pigmentation is not produced by dead cells. Cells were seeded in a 96-well plate (Becton
and Dickinson) at a density of 3 � 104 cells/well in 100 μL of culture medium and incubated for 24 h at 37 °C with 5%
CO2. Then, 10 μL of MTT reagent was added to each well. After mixing gently, the cells were incubated for 4 h at 37 °C
with 5% CO2. After removal of the supernatant, 100 μL of crystal dissolving solution was added and mixed with the cell
solution, and the sample was further incubated for 4 h at 37 °C with 5% CO2. Finally, the optical density at 550 nm was
measured using a microplate reader (BIO-RAD, Benchmark, Hercules, USA).

The 50% inhibitory concentration (IC50) of Andro for each cell typewas calculated using the curve fit function “Rodbard”
in software ImageJ (ImageJ, RRID:SCR_003070).

Cell cycle analysis
Cells (2�105 cells) were collected by centrifugation (300�g at room temperature for 5min), resuspended in 50 μLof PBS
and fixed by 450 μL of 80% ethanol for more than 3 hours at -20°C. Cell pellets obtained by centrifugation (300�g,
5 min) were washed in 500 μL of PBS, incubated with 200 μL of Muse Cell Cycle Reagents (Merck Millipore
Corporation, Darmstadt, Germany) in the dark for 30 min, and the cell cycle was measured by Muse Cell Analyzer
(Merck Millipore Corporation) which uses miniaturized fluorescence detection and microcapillary cytometry to deliver
single-cell analysis.
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Quantification of Annexin V-positive cell percentage
Apoptosis was detected using the MuseTM Annexin V and Dead Cell Assay Kit (Merck Millipore Corporation)
in accordance with the manufacturer’s protocols. Briefly, cells were seeded in a 24-well plate dish (2�105 cells/well)
for 24 h and collected by centrifugation (300�g at 4°C for 5 min), resuspended in 100 μL of RPMI 1640 medium and
then incubated with 100 μL fluorescently labeled Annexin V reagent at room temperature for 20 min. Percentages of
all cells (alive plus dead) labeled with Annexin V (a label of apoptotic cells) and/or 7-AAD (7-Aminoactinomycin D; a
fluorescent chemical compound with a strong affinity for DNAwhich is used as a label of late-apoptotic/dead cells) were
measured using the Muse Cell Analyzer and expressed by dot plots.

Caspase-3/7 activity analysis
Caspase-3/7 activitywas analyzed using theMuseTMCaspase-3/7AssayKit (MerckMillipore Corporation) in accordance
with the manufacturer’s protocols. Cells were seeded for 24 h at a concentration of 2�105 cells/mL in a 24-well plate dish
(Falcon). Cells were collected by centrifugation (300�g at 4°C for 5 min) and suspended in 50 μL of RPMI 1640medium.
Then, 5 μL of caspase-3/7 Reagent working solution (1 μL of MuseTM Caspase3/7 Reagent and 7 μL of 1� PBS) was
added, and cells were incubated for 30 min at room temperature in the dark. Finally, 150 μL of 7-AAD working solution
was added, and Caspase-3/7 activity and cell viability were measured using a Muse Cell Analyzer.

Measurement of ROS production
ROS production was measured using the MuseTM Oxidative Stress Kit (Merck Millipore Corporation) according to the
manufacturer’s protocols. Cells were collected by centrifugation (300�g at 4°C for 5 min), and then the supernatant was
removed. Muse® Oxidative Stress Regent working solution (190 μL) was added into each tube containing 10 μL cell
suspension. Cells were vortexed in the medium for 5 seconds and then incubated at 37°C for 30 min in the dark, and the
percentage of ROS producing cells was determined by cytometry using the Muse Cell Analyzer.

Measurement of mitochondrial membrane depolarization
The mitochondrial membrane depolarization was determined using the MuseTM MitoPotential Kit (Merck Millipore
Corporation) according to themanufacturer’s protocols. Cells were collected by centrifugation (300�g at 20°C for 5min)

Figure 1. Assessment of cell viability after treatment for 24 hwith Andro, Ara-C, or VCR. The y-axis values of the
cell viability histograms represent the optical density (550 nm) in comparison with the control (set as 100%) as
measured by MTT assay. The optical density markedly decreased after treatment with Andro (10, 30, 50 μM), Ara-C
(40 μM), or VCR (0.1 μM) compared with untreated cells in THP-1 (a) and H929 (b) cells. The results are expressed as
mean � SD of three independent experiments.
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and then mixed with 100 μL of Assay Buffer, and 95 μL of MitoPotential working solution (MuseTM MitoPotential Dye
diluted to 1:1000 in assay buffer). After incubating at 37°C for 20min, 7-AAD reagent (5 μL)was added to each tube, and
it was vortexed for 3 to 5 seconds. After incubation at room temperature for 5min, percentages of all cells (alive plus dead
cells) showing mitochondrial membrane depolarization and/or labeling with 7-AADwere measured using theMuse Cell
Analyzer. The 7-AAD staining results of this experiment are not shown in the present study but were consistent with the
7-AAD staining results shown in Figure 4 and will be provided by the authors upon request.

Statistical analysis
Data were analyzed using Excel software (Microsoft Excel 365) and the Student’s t-test was used to assess statistical
significance between the various treatments. Results were expressed as mean � SD of three independent experiments.
P < 0.05 was considered statistically significant.

Results
Effects of Andro on the cell viability
The effects ofAndro, Ara-C, andVCRon the viability of THP-1 andH929 cells were compared by incubating the cells for
24 hwith orwithout an agent at the indicated concentrations, followed by anMTTassay (Figure 1). TreatmentwithAndro
(50 μM) reduced the viability of THP-1 and H929 cells to 39.2% and 13.0%, respectively, compared with untreated cells.
The viability-reducing effect byAndrowas concentration-dependent (Figure 1) and its IC50 values for treating THP-1 and
H929 cells were calculated as 31 μM and 8 μM, respectively.

Figure 2. Morphological changes and DNA fragmentation induced by Andro, Ara-C, and VCR.Morphologies of
THP-1 (a) and H929 (b) cells after 24 h of treatment with Andro, Ara-C, or VCR were compared with untreated cells
after Wright-Giemsa staining. White arrows indicate cells showing nuclear condensation and black scale bars
represent 20 μm. (c) Nuclear DNA fragmentation was revealed by agarose gel electrophoresis of DNA isolated after
24 h of treatment with Andro (50μM), Ara-C (40μM), or VCR (0.1μM) in THP-1 (lanes 2-5) and H929 cells (lanes 6-9).
Lane 1, DNA size marker; lanes 2 and 6, untreated cells; lanes 3 and 7, cells treated with Andro; lanes 4 and 8, cells
treated with Ara-C; lanes 5 and 9, cells treated with VCR.
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Based on the therapeutic plasma concentrations of Ara-C and VCR for hematopoietic tumors (Capizzi et al., 1983;
Nelson, 1982), Ara-C andVCRwere used at 40μMand 0.1 μM, respectively. They reduced the viability of THP-1 cells to
50-55%, whereas Ara-C only had a slight impact on H929 cells (Figure 1). The viability-reducing effect of Andro on
THP-1 cells was similar to that of Ara-C and VCR (Figure 1a), whereas—at the concentrations used—Andro was
markedly superior to Ara-C and VCR in reducing the viability of H929 cells (Figure 1b).

These data agree well with our previous studies on THP-1 cells (Doi et al., 2018) and H929 cells (Doi et al., 2017),
although in the latter study the effect of Andro on cell viability was only measured at 50 μM.

Figure 3. Cell cycle phase distribution of the cells treated with Andro, Ara-C, or VCR. Cell cycle phases of
individual cells were measured after treatment for 24 h with Andro (50μM), Ara-C (40μM), or VCR (0.1μM) using the
Muse Cell Analyzer. In contrast to Ara-C and VCR, treatment with Andro hardly affected the percentages of THP-1
or H929 cells found in the G0/G1, S, and G2/M phases. Percentages are expressed as mean of three independent
experiments. For statistical analysis the percentages of cells in identical phaseswere compared (*P < 0.05, **P < 0.01,
***P < 0.001). The top of the figure shows cell cycle histograms of representative results.
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Effects of Andro on the morphology and DNA of the cells
Cellular shrinkage and nuclear condensation were observed in both THP-1 and H929 cells after treatment for 24 h with
either Andro, Ara-C, or VCR (Figure 2a,b). Andro induced both phenomena in almost all H929 cells (Figure 2b).
Furthermore, DNA isolation followed by agarose gel electrophoresis revealed that these treatments with Andro, Ara-C,
and VCR each had induced nuclear DNA fragmentation in both THP-1 and H929 cells (Figure 2c).

For THP-1 cells, similar data were shown in Doi et al. (2018), but in our previous study on H929 cells we did not show
the effects of Andro on cell morphologies (Doi et al., 2017). Additionally, because of improved gel handling and
visualization, in the present study the DNA fragmentation ladders are better visible (Figure 2c) than in those previous
studies.

Cell cycle analysis
The effects of 24 h treatment with Andro, Ara-C, or VCR on cell cycle progression were compared (Figure 3). In the case
of Andro, the percentages of cells in the G0/G1, S, and G2/M phases were very similar to those in untreated THP-1 and
H929 cells. On the other hand, Ara-C treatment significantly increased the percentage of cells in the G0/G1 phase, in
agreement with its known inhibition of DNA synthesis (Li et al., 2017). Likewise as expected, VCR significantly
increased the percentage of cells in the G2/M phase, in agreement with its known inhibition of mitotic spindle formation
(Kothari et al., 2016).

For THP-1 cells, we previously did not investigate the effect of Andro on the cell cycle phase distribution (Doi et al.,
2017), and for H929 cells we only reported a single observation (n = 1) without statistical significance (Doi et al., 2018).

Effects of Andro on the annexin V-positive rate of the cells
Phosphatidylserine externalization from the inner to the outer cell membrane is a characteristic feature of apoptotic
cell death which can be measured by annexin V-binding (Demchenko, 2013). Dual labeling with annexin V and 7-AAD

Figure 4. Rates of Annexin V-positive cells after treatment for 6~48 hwithAndro, Ara-C, or VCRof THP-1 (a) and
H929 (b) cells. Labeling with Annexin V and 7-AADwere analyzed by theMuse Cell Analyzer. The upper figures show
representative dot plots in which the x-axis indicates Annexin V labeling and the y-axis indicates 7-AAD labeling. In
the lower figures the Annexin V staining results are expressed as mean � SD of three independent experiments.
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(a label for cells with permeabilized membranes such as late-apoptotic cells and dead cells) of THP-1 and H929 cells was
performed after they had been treated for 6~48 h with Andro, Ara-C, or VCR. The percentages of annexin V-positive cells
amongTHP-1 andH929cells increased depending on their timeof treatmentwith either anti-tumor agent (Figure 4).Overall,
higher percentages of annexin V-positive THP-1 cells were not found after treatment with Andro than with Ara-C or VCR
(Figure 4a), whereas Andro was markedly superior to Ara-C and VCR in inducing apoptosis in H929 cells (Figure 4b). The
7-AAD-staining results, shown in the cell cytometry dot plots in the upper part of Figure 4, suggest that after 24 h treatment
with Andro the majority of H929 cells were already dead, emphasizing the high toxicity of Andro for this cell type.

The results of Figure 4 are consistent with our previous findings for Annexin-V positive rates of THP-1 and H929 cells
after Andro, Ara-C, or VCR treatment, although in those studies the only timepoint analyzed was after 24 h of treatment
(Doi et al., 2017, 2018).

Effects of Andro on the Caspase-3/7 activity of the cells
Treatment with Andro for 24 h increased the percentages of cells with caspase-3/7 activity from 4.3% to 81.7% in THP-1
cells (Figure 5a) and from 9.2% to 95.7% in H929 cells (Figure 5b). These increases were substantially higher than those
induced with Ara-C or VCR treatments (Figure 5). In the presence of a caspase inhibitor, Z-VAD-FMK, the Andro-
induced caspase-3/7 positive rates of THP-1 and H929 cells were significantly lower, namely only 25.9% and 56.7%,
respectively (Figure 5). Z-VAD-FMK also significantly reduced, although not by as much, the enhancing effects of
Ara-C and VCR on caspase 3/7 positive rates (Figure 5).

The results in Figure 5 are consistent with our previous findings for THP-1 cells (Doi et al., 2018) and H929 cells
(Doi et al., 2017), although for the latter we previously did not study the effect of adding a caspase inhibitor.

Effects of Andro on ROS production and mitochondrial membrane depolarization of the cells
Treatment with Andro (50 μM) for 24 h increased the percentage of ROS producing cells from 6.8% to 85.8% in THP-1
cells (Figure 6a-i) and from 4.8% to 91.1% in H929 cells (Figure 6b-i). Andro increased the ROS positive rates in a

Figure 5. Treatment for 24 h with Andro, Ara-C, or VCR enhanced the caspase-3/7 activities in THP-1 (a) and
H929 (b) cells, and the level of enhancementwas reduced in the presence of the pan-caspase inhibitor Z-VAD-
FMK. The results are expressed asmean� SD of three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.001,
comparing with and without Z-VAD-FMK).
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concentration-dependent manner, and in H929 cells even at 10 μM (the lowest concentration tested) the enhancing effect
of Andro on ROS production was much higher than that of Ara-C or VCR. The ROS enhancing effect of Andro was
largely abolished by the presence of ROS inhibitor NAC, whereas NAC only slightly reduced the ROS enhancing effects
of Ara-C and VCR (Figure 6a-i, b-i).

Consistent with the findings for ROS production, treatment with Andro (50 μM) for 24 h increased the percentages of
cells with depolarized mitochondrial membranes from 12.3% to 80.5 % in THP-1 cells (Figure 6a-ii) and from 6.5% to
98.8 % in H929 cells (Figure 6b-ii). These Andro effects were concentration-dependent and even at 10 μM the effect of
Andro on H929 cells was stronger than that of Ara-C or VCR. The presence of NAC significantly reduced the
enhancement of mitochondrial membrane depolarization caused by Andro but hardly or not the effects of Ara-C or
VCR (Figure 6a-ii, b-ii).

Finally, we checked whether the presence of NAC interfered with the effects of 24 h incubation with Andro, Ara-C,
or VCR on cell viability and the percentage of annexin V-positive cells. It was found that NAC largely abolished the
effects of Andro on both properties, especially in H929 cells, but had little or no impact on the effects of Ara-C or VCR
(Figures 7, 8).

Discussion
The herb Andrographis paniculate, called “king of bitters” because of its extremely bitter taste, has been used for
centuries for various medicinal purposes. The primary bioactive component of this medicinal plant is andrographolide,
which is bitter and present in all parts of the plants but maximally (>2 % of dry weight) in the leaves (Jarukamjorna and
Nemoto, 2008; Sharma et al., 2018). The present study confirms that andrographolide can be toxic for tumor cell lines, in

Figure 6. Effects of treatment for 24 hwith Andro, Ara-C, or VCR onROS production (a-i, b-i) andmitochondrial
membrane depolarization (a-ii, b-ii) in THP-1 (a) and H929 (b) cells. The presence of the ROS production inhibitor
NAC largely reduced the enhancing effects of Andro on both parameters in either cell type, whereasNAChad little or
no impact on the effects of Ara-C and VCR. The results are expressed as mean � SD of three independent
experiments (*P < 0.05, **P < 0.01, ***P < 0.001, comparing with and without NAC).
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this case for human leukemia monocytic cell line THP-1 and human multiple myeloma cell line H929. For the first time,
this study shows that Andro is toxic for THP-1 and H929 cells through induction of ROS-dependent apoptosis.

Apoptosis is a form of programmed cell death involving cascades of interactions (Rossi and Gaidano, 2003; Schultz
and Harrington, 2003). Andro-treated THP-1 and H929 cells showed typical symptoms of apoptosis, such as cellular
shrinkage, nuclear condensation, DNA fragmentation, stainability with Annexin V, caspase 3/7 activation, and mito-
chondrial membrane depolarization. Notably, in the presence of NAC, an inhibitor of ROS production, the cytotoxic and
apoptotic effects of Andro on THP-1 and H929 cells were largely abolished. The induction of ROS-dependent apoptosis
by Andro has also been observed in other cancer cells such as a breast cancer cell line (Banerjee et al., 2016), a colon
cancer cell line (Khan et al., 2018), and lymphoma cell lines and primary lymphoma (Yang et al., 2010). The levels of
ROS production in THP-1 andH929 cells induced byAndroweremuch higher than induced byAra-C andVCR, and—in
sharp contrast to Andro—the cytotoxic/apoptotic effects of Ara-C andVCRwere hardly sensitive to NAC. This implies a
different mode of action and suggests that an additive anticancer therapeutic value might be achieved if Andro would be
used in combination with agents such as Ara-C and/or VCR. While Ara-C is known to be a DNA polymerase inhibitor
that inhibits DNA synthesis (Li et al., 2017), VCR inhibits mitosis by inhibiting microtubule polymerization (Kothari
et al., 2016). Unfortunately, the mechanism by which Andro induces ROS-dependent apoptosis is still not understood
(see below).

The (24 h) IC50 concentrations of Andro for reducing the cell viability of THP-1 and H929 cells were determined
as 31 μM and 8 μM, respectively, which is consistent with our previous findings (Doi et al., 2017, 2018). These
concentrations are considerably below the Andro concentrations at which normal cells are noticeably affected , namely:
Banerjee et al., 2016, found no notable effect on the growth of a normal breast epithelial cell line MCF-10A at 80 μM
Andro; Khan et al., 2018 did not find significant growth effects on the normal intestine epithelial cell line IEC-6 even at
1024 μMAndro; and Yang et al., 2010, did not find apoptosis of normal lymphocytes at 50 μMAndro (those authors did
not check higher concentrations). The 31 μM and 8 μM values are also lower than the (24 h) IC50 concentrations
determined as 52 μM for colon cancer MDA-MB-231 cells (Banerjee et al., 2016), 40 μM for acute myeloid leukemic
HL-60 cells (Cheung et al., 2005), and 60 μM for colon cancer HT-29 cells (Khan et al., 2018). For THP-1 cells,

Figure 7. NAC largely reduces Andro’s effects on cell viability but has little impact on the effects of Ara-C and
VCR. Cell viability was measured after 24 h treatment with Andro, Ara-C, or VCR of THP-1 (a) and H929 (b) cells in the
presence or absence of the ROS production inhibitor NAC. The y-axis values represent the optical density (550 nm) in
comparison with the control (set as 100%) as measured by MTT assay.
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previously, low concentrations of Andro, namely ≤3 μM, were found to affect functional properties (Gupta et al., 2020;
Ji et al., 2005), but our current findings agree well with a report that the (72 h) LD50 concentration was ~20 μM
(Habtemariam, 2003). The high sensitivity to Andro that we observed for H929 viability is reminiscent of observations
for other types of lymphoma cell lines, considering the (48 h) IC50 values reported for Ramos (Burkitt lymphoma)
(20 μM), Granta (mantle cell lymphoma) (40 μM), HF-1 (follicular lymphoma) (15 μM), and SUDHL4 (diffuse large
B-cell lymphoma) (30 μM) (Yang et al., 2010). In primary follicular lymphoma cells strong apoptotic effects were
induced after 24 h incubation with only 5 μMAndro (Yang et al., 2010). High sensitivities of multiple myeloma cell lines
have also been reported, as for the cell lines RPMI-8226 andU266 theAndro (48 h) LC50 concentrations were determined
as10 μM and 8 μM, respectively (Gunn et al., 2011). Furthermore, a 72 h incubation with only 1 μM Andro reduced
the viability of the multiple myeloma cell line OPM1 (RRID:CVCL_5210) to less than 70% (Gao and Wang, 2016). In
short, the Andro sensitivities that we observed for monocytic leukemia THP-1 and multiple myeloma H929 cells are in
agreement with previous observations and emphasize that, in particular, multiple myeloma cells are very sensitive to
Andro. From the viewpoint of potential therapeutic usage, this sensitivity is even more interesting given our finding that
H929 cells are not very sensitive to Ara-C andVCR. Namely, this raises the hope that some tumor cells that are refractory
to treatment with the common drugs Ara-C and VCR may be treated with Andro.

Andrographolide is a rather hydrophobic molecule (for its structure see Figure 9) that is considered nontoxic even at high
doses (Calabrese et al., 2000; Sattayasai et al., 2010), but its low aqueous solubility limits the plasma concentrations that
can be readily achieved (Bailly, 2020; Pandey and Rao, 2018). However, steady-state blood concentrations of ~1.9 μM
have been reported in humans taking ~1mg andrographolide per kg bodyweight per day (Panossian et al., 2000), and this
is expected to be within the therapeutically effective concentration range for Andro against multiple myeloma cells (see
above). Furthermore, biochemical modifications and preparation methods were described that can improve the low
solubility and bioavailability ofAndro (e.g., Li et al., 2020; Suresh et al., 2013; Tang et al., 2014). Nevertheless, as aword
of caution, we must point out that (modified) Andro has not been firmly established yet as an anticancer drug despite

Figure 8. NAC largely reduces Andro’s stimulation of apoptosis but has little impact on the effects of Ara-C
and VCR. Annexin V-positive rates were measured after 24 h treatment with Andro, Ara-C, or VCR of THP-1 (a) and
H929 (b) cells in the presence or absence of the ROS production inhibitor NAC. The results are expressed as mean�
SD of three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.001, comparing with and without NAC).
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various promising reports and that a clinical trial in which Andro was used to treat colorectal cancer has not reported
results yet despite having been completed in 2016 (Shu et al., 2020).

Several studies found an effect of Andro on cell cycle phase distribution, and authors assumed that Andro induced cell
cycle arrest (Banerjee et al., 2016; Cheung et al., 2005; Dai et al., 2017; Khan et al., 2018). For example, for the gastric
cancer cell line SGC7901 (RRID:CVCL_0520), it was reported that higher concentrations of Andro caused cell cycle
arrest in the G2/M phase (Dai et al., 2017). In contrast, for the colon cancer cell line HT-29 (RRID:CVCL_0320), it was
reported that low concentration of Andro caused significant cell cycle arrest in the G2/M phase, while higher
Andro concentrations caused arrest in the G0/G1 phase (Khan et al., 2018). Meanwhile, for the acute myeloid leukemic
cell line HL-60, Andro reportedly arrested the cells in G0/G1 phase (Cheung et al., 2005). In contrast to those studies, the
present study did not find a notable effect of Andro on the cell cycle phase distribution of THP-1 and H929 cells. Our
findings combined with the inconsistent cell cycle distribution effect of Andro reported for other tumor cell lines
(Banerjee et al., 2016; Cheung et al., 2005; Dai et al., 2017; Khan et al., 2018), and the fact that in those studies a true
arrest probably cannot be considered as proven, suggest that Andro does not specifically target a specific step in cell cycle
progression.

An important question is why cancer cells, compared to normal cells, can be more sensitive to the induction of ROS-
mediated apoptosis. It may be related to mitochondria being the major source of reactive oxygen species (ROS)
(Orrenius, 2007; Vyas et al., 2016) and the unusual properties of typical cancer cell mitochondria. Most cancer cells
show an increased reliance on aerobic glycolysis (Warburg effect) (Warburg, 1956) andmany cancers, includingmultiple
myeloma, show an enhanced biogenesis of mitochondria compared to normal cells (Zhan et al., 2017). Many cancers,
including multiple myeloma (MM), retain more cytosolic iron to promote tumor cell growth, and higher cytosolic iron
promotes oxidative damage due to its interaction with reactive oxygen species generated by mitochondria (Zhan et al.,
2017).

The possibility to specifically target multiple myeloma cells for the induction of ROS-dependent apoptosis has
already been shown for a number of agents. For example, ex vivo analysis showed that pharmacological-dosed ascorbic
acid (PAA; ultra-high doses of vitamin C) selectively induced apoptosis in primary multiple myeloma cells while
not significantly harming other bone marrow cells, and PAA-induced apoptosis in the multiple myeloma cell line OCI-
MY5 could be inhibited by NAC (Xia et al., 2017). Furthermore, treatment with a mitochondrial-targeting agent decyl-
triphenylphosphonium (10-TPP) increased intracellular steady-state pro-oxidant levels and apoptosis inmultiplemyeloma
cell lines (Schibler et al., 2016); 10-TPP is a lipophilic agent that associates directly with mitochondria, likely with the
inner membrane (Murphy, 2008; Ross et al., 2008; Schibler et al., 2016). Dexamethasone, a glucocorticoid, is another
hydrophobic lipophilicmolecule that induced apoptotic cell death inmultiple myeloma cell lines, and this effect could also
be reduced by NAC (Bera et al., 2010); in sharp contrast, in normal cells dexamethasone was found to inhibit ROS

Figure 9. The structure of andrographolide.
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generation (Dandona et al., 1999). Aswith Andro, themechanism for the induction of apoptosis in tumor cells is likely not
fully understood for any of the above three agents.

We speculate that the main effect of Andro involves a—yet to be identified—direct interaction with mitochondrial
membranes, and that the end-effect of this interaction on the cell depends on the condition of the mitochondria and the
redox status of the cell. Such a model would make it easier to explain why we and others find that Andro can induce
apoptotic cell death (see above), whereas in other cell systems Andro has been proven to protect against oxidative stress
and apoptosis (reviewed by Kishore et al., 2017; Mussard et al., 2019). A direct interaction of Andro—which is
a lipophilic molecule (Pandey and Rao, 2018)—with the mitochondrial membranes might also explain a protective
effect of Andro against mitochondrial fission (Geng et al., 2019). Selective disruptive/apoptotic effects against only
some mitochondria, such as in THP-1 and H929 cells, may also help explain why Andrographis paniculate can have
Andro stored in different tissues without the plant itself being harmed. In plants, Andro appears to have defensive roles
against bacteria (Zhang et al., 2020) and herbivores (Edwin et al., 2016), although the mechanisms are not yet well
understood. Possibly, the same features of Andro that evolved in plants to distinguish between self and enemy cells may
also determine its different effects on cancerous and non-cancerous cells. The enormous medicinal potential of Andro
means that future research to better clarify its functions and mechanisms is imperative.

Conclusion
Andro induces ROS-dependent apoptosis in monocytic leukemia THP-1 and multiple myeloma H929 cells. This
cytotoxic effect is mechanistically different from that of Ara-C and VCR, suggesting that these agents could have
supplementary effects if used in combination therapies. H929 cells, in particular, are very sensitive to Andro while they
are not very sensitive to Ara-C and VCR, underscoring Andro’s promise as a potential drug against multiple myeloma.
Future studies must unravel the mechanisms of Andro’s anti-tumor effect in more detail. Our study supports that Andro
may be a valuable addition to the growing palette of drugs that are available for chemotherapy against hematopoietic
tumors.
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Methods 
 
Materials - Please include IUPAC name of Andro. And also include a figure containing the 
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Our response: In the Methods section, we have now included the IUPAC name of Andro. In 
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not find significant growth effects on the normal intestine epithelial cell line IEC-6 even at 
1024 μM Andro; and Yang et al., 2010, did not find apoptosis of normal lymphocytes at 50 μ
M Andro (those authors did not check higher concentrations). The 31 μM and 8 μM values 
are also lower than the (24 h) IC50 concentrations determined as 52 μM for colon cancer 
MDA-MB-231 cells (Banerjee et al., 2016), 40 μM for acute myeloid leukemic HL-60 cells 
(Cheung et al., 2005), and 60 μM for colon cancer HT-29 cells (Khan et al., 2018). 
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This is another study of the effect of the diterpenoid lactone andrographolide on the growth of 
cancer cells and the induction of cell death. Two cell lines (THP-1 and H929) were used and the 
effects of Andro compared to those of the Vinca alkaloid vincristine and cytarabine (Ara-C). The 
data are correctly presented but there is nothing really new or exciting in this study. The ROS-
dependent pro-apoptotic activity of Andro has been already reported in several studies with other 
cancer cell lines. Showing the same type of data/effects with additional cell lines is not a major 
discovery. There is a lack of innovation and originality, despite the quality of the data. 
 
Moreover, the conclusion is excessively optimistic and excessive. Andro is known for a long time 
and the development of this compound has failed, due to an unfavorable benefit/risk ratio (low 
bioavailability, toxicity, etc.). The limitations should be more clearly indicated. 
 
The literature coverage could be improved, to cite recent reviews about Andro and cancer.
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Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly
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